Label-PHD Particle Filter for Multitarget Tracking
نویسندگان
چکیده
منابع مشابه
Random Set Particle Filter for Bearings-only Multitarget Tracking
The random set approach to multitarget tracking is a theoretically sound framework that covers joint estimation of the number of targets and the state of the targets. This paper describes a particle filter implementation of the random set multitarget filter. The contribution of this paper to the random set tracking framework is the formulation of a measurement model where each sensor report is ...
متن کاملAn Optimization - Based Parallel Particle Filter for Multitarget Tracking
Particle filters are being used in a number of state estimation applications because of their capa bility to effectively solve nonlinear and non-Gaussian problems. However, they have high com putational requirements and this becomes even more so in the case of multitarget tracking, where data association is the bottleneck. In order to perform data association and estimation jointly, typically a...
متن کاملA Boosted Particle Filter: Multitarget Detection and Tracking
The problem of tracking a varying number of non-rigid objects has two major difficulties. First, the observation models and target distributions can be highly non-linear and non-Gaussian. Second, the presence of a large, varying number of objects creates complex interactions with overlap and ambiguities. To surmount these difficulties, we introduce a vision system that is capable of learning, d...
متن کاملBox-Particle PHD Filter for Multi-Target Tracking
This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable to deal with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-PHD filter reduces the numbe...
متن کاملMultitarget Tracking Using a Particle Filter Representation of the Joint Multitarget Density
This paper addresses the problem of tracking multiple moving targets by recursively estimating the joint multitarget probability density (JMPD). Estimation of the JMPD is done in a Bayesian framework and provides a method for tracking multiple targets which allows nonlinear target motion and measurement to state coupling as well as non-Gaussian target state densities. The JMPD technique simulta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.11.031